Monitoreo Hemodinàmico




DIPLOMADO DE AEROMEDICINA Y 
TRANSPORTE DE CUIDADOS CRÍTICOS
 V GENERACIÓN
















5TA VERSIÒN

TEMA                         : Monitoreo Hemodinàmico

Alumno                      : Dr. Edin Maldonado Cubas
Profesor Titular           : Jaime J. Charfen.






















MONITOREO HEMODINÀMICO

INTRODUCCIÒN.

La monitorización hemodinámica en el paciente en cuidados crìticos nos permite obtener información sobre fisiologìa cardiovascular constituyendo una pieza fundamental para el diagnóstico y tratamiento del paciente con hipoperfusión tisular.

La monitorización hemodinámica se ha rodeado de interrogantes en cuanto a su utilidad y su impacto final sobre el pronóstico de nuestros pacientes, desde la aparición del catéter de arteria pulmonar hasta el desarrollo reciente de tecnologías mínimamente invasivas.

Vigilar los componentes del sistema cardiovascular, como el gasto cardiaco, la precarga, posrcarga, la respuesta al volumen, requerimineto de vasoactivos, inotrópicos, etc

Objetivos de la reanimación hemodinámica.
“Un primer paso obligado en la evaluación inicial del paciente crítico es determinar la idoneidad del estado de perfusión de los tejidos. La presencia y/o persistencia de disoxia celular va a ser un factor fundamental en el desarrollo de lesiones orgánicas, fracaso multiorgánico y, eventualmente, la muerte del individuo. Lo que habitualmente conocemos como inestabilidad hemodinámica suele referirse a la presencia de signos clínicos sugestivos de hipoperfusión (alteración del sensorio, pobre relleno capilar, etc.), y, sobre todo, a la presencia de hipotensión arterial. Ahora bien, en los últimos años la evidencia de que la presencia de hipoperfusión aun en ausencia de hipotensión y/o de estos signos clínicos, a lo que se denomina shock oculto o compensado, se asocia también a cifras significativamente elevadas de morbimortalidad7 ha llevado a un mayor esfuerzo por detectar dichas situaciones de hipoperfusión.

En el paciente crítico, hablaremos de shock, o insuficiencia cardiovascular, cuando tengamos evidencia de hipoperfusión tisular. La incapacidad para mantener la adecuada perfusión de los tejidos va a provocar un incremento en la extracción de oxígeno a nivel microcirculatorio, así como el inicio de las vías anaerobias a fin de mantener la respiración celular. Así, en nuestra práctica clínica, hablaremos de situación de shock cuando detectemos una disminución de las saturaciones venosas de oxígeno y/o una elevación del lactato sérico, más allá de la presencia o no de hipotensión arterial

Los principales determinantes de la llegada de oxígeno a los tejidos son (a) la presión de perfusión y (b) el transporte global de oxígeno. El proceso de reanimación hemodinámica, mediante la manipulación de estas variables de presión y flujo, buscará restaurar el equilibrio entre transporte (DO2) y consumo (VO2) de oxígeno a los tejidos, con la consiguiente reversión de la anaerobiosis. La corrección del estado de disoxia debería conseguirse cuanto antes, puesto que la duración del daño va a condicionar el mayor desarrollo de fracaso orgánico, con consecuencias directas sobre el pronóstico del individuo.

Presión arterial
Utilizaremos la presión arterial media (PAM) como estimación de la presión de perfusión de los tejidos. Puesto que, a nivel fisiológico, la vasculatura pierde su capacidad de autorregulación a partir de valores de PAM inferiores a 60-65mmHg, la mayoría de los trabajos han propuesto un valor objetivo de PAM de 65mmHg. En pacientes sépticos, por ejemplo, un nivel de corte de PAM de 65mmHg durante las primeras 48h de ingreso demostró ser el que mejor discriminaba a los supervivientes y no-supervivientes9. Además, la consecución de niveles más elevados de PAM no ha mostrado superioridad en resultados. Cabe destacar que trabajos recientes con videomicroscopia capilar han evidenciado que la microcirculación de determinados pacientes sí podría beneficiarse de valores más elevados de PAM10, lo que sugiere la posibilidad de individualizar la PAM de acuerdo a su efecto sobre la microcirculación. Sin embargo, todavía no se dispone de estudios prospectivos que analicen el impacto en el pronóstico de la optimización individualizada de la PAM según parámetros microcirculatorios.

Se contemplan 2 situaciones especiales en cuanto al manejo de la PAM en la patología crítica aguda: (a) en las situaciones de hemorragia incontrolable en pacientes traumáticos, y (b) en los pacientes con traumatismo craneoencefálico grave sin hemorragia sistémica11. En la primera situación, se recomienda mantener niveles de PAM de 40mmHg hasta el control quirúrgico de la hemorragia. En cuanto a las situaciones de traumatismo craneoencefálico grave en las que exista deterioro neurológico y no tengamos evidencia de hemorragia sistémica, dado que desconocemos la presión de perfusión cerebral, se recomienda mantener niveles de PAM de 90mmHg. Una vez monitorizada la presión intracraneal, ajustaremos el nivel de PAM con el fin de asegurar la perfusión cerebral

Variables de transporte de oxígeno
Además de asegurar la correcta presión de perfusión del tejido, deberemos adecuar el DO2 a las necesidades metabólicas. Para ello, perseguiremos incrementar el DO2. Aunque la reanimación hemodinámica se basa principalmente en la optimización de las variables de flujo (asegurando el contenido arterial de O2), como norma general, no perseguiremos unos valores predeterminados, sino más bien una adecuación de estas variables hasta llegar a la normalización de los parámetros que nos reflejan el equilibrio global de aporte-consumo de oxígeno. Así, descartada o corregida la hipoxemia arterial, no parece lógico pretender unos valores concretos de DO2, gasto cardíaco (GC) o hemoglobina, sino más bien su adecuación en función del estado global de oxigenación tisular.

Merece especial mención la reanimación de pacientes de alto riesgo quirúrgico. En esta población de pacientes existe evidencia suficiente para recomendar el uso de ciertos niveles de DO2 (>600ml O2/min/m2) como objetivo en la optimización hemodinámica tanto pre, como intra o postoperatoria13. Sin embargo, parece razonable afirmar que el uso de variables que nos informen del equilibrio entre DO2 y VO2 debería ofrecer ventajas sobre las variables de DO2 aisladas, para evitar tanto la infra como la suprarresucitación, con los problemas que cada una conlleva.

Marcadores globales de hipoperfusión
Como acabamos de exponer, más allá de la consecución de valores de DO2 o flujo predeterminados, la reanimación hemodinámica pretenderá la normalización de valores fisiológicos de marcadores de perfusión global del organismo. En la práctica clínica disponemos fundamentalmente de 2 variables extremadamente útiles para este fin: las saturaciones venosas de oxígeno y los niveles de lactato.

Saturaciones venosas de oxígeno
La saturación venosa mixta de oxígeno (SvO2), obtenida en la arteria pulmonar, probablemente representa el mejor indicador de la adecuación del DO2. En diversas situaciones de patología crítica, la saturación venosa central de oxígeno (SvcO2), obtenida en la aurícula derecha, ha demostrado una buena correlación con la SvO2 (aunque sobreestima en torno al 5%), así como un consistente paralelismo en sus cambios14. La reducción del GC y/o el aumento de las necesidades metabólicas se traducirán en un incremento compensador en la extracción de oxígeno, con el consiguiente descenso de las saturaciones venosas. Este descenso será precoz, pudiendo preceder incluso a la elevación del lactato sérico. La incorporación de las saturaciones venosas como objetivo metabólico final del proceso de reanimación ha demostrado su impacto beneficioso en el pronóstico de diferentes poblaciones de pacientes críticos15. Sin embargo, en determinadas situaciones de shock distributivo, la presencia de SvcO2 elevadas también se ha asociado a mayor mortalidad16. Este fenómeno vendría determinado por diferentes mecanismos, como fenómenos de shunt, flujo heterogéneo, o alteraciones en la extracción de oxígeno. Por tanto, es fundamental conocer las limitaciones de esta variable y, en el contexto clínico adecuado, disponer de otros parámetros que nos informen sobre el estado de perfusión tisular del individuo.

Lactato
En general, la elevación en la concentración de lactato en sangre indica la presencia de hipoxia tisular y metabolismo anaerobio. La magnitud de esta elevación en los niveles de lactato se ha correlacionado directamente con el pronóstico del paciente con patología crítica aguda17. En cuanto a su utilidad en la guía del proceso de reanimación, la monitorización del aclaramiento del lactato en respuesta a las intervenciones terapéuticas no se ha mostrado inferior a la resucitación guiada por SvcO2

En situaciones de hipoxia tisular, además de la formación de lactato, se producirá también una elevación de aniones secundarios a la anaerobiosis, así como un defecto en el lavado de CO2 del organismo. Así, la determinación del exceso de base estándar y de la diferencia arteriovenosa de CO2 −P(v-a)CO2− puede ser de ayuda en la evaluación del estado global de oxigenación de los tejidos. Aunque la alteración en los valores iniciales de exceso de base estándar ha mostrado un valor pronóstico similar al del lactato, su evolución en el tiempo se ve afectada por múltiples factores diferentes a la hipoxia celular, por lo que no se recomienda su uso como parámetro independiente en la guía de la reanimación19. En cuanto a la P(v-a)CO2 (ya sea central o mixta), diferentes trabajos han correlacionado inversamente su valor a los valores de índice cardíaco. Niveles de P(v-a)CO2>6mmHg han demostrado ser útiles en la detección de hipoperfusión persistente a pesar de la normalización de la SvcO220, aunque su incorporación a algoritmos de resucitación todavía no se ha testado.

Marcadores de circulación regional y/o microcirculación
A pesar de que en los últimos años existe una creciente evidencia del valor pronóstico de diferentes parámetros referentes a la microcirculación, a día de hoy no disponemos de estudios que evalúen la utilidad de dichos parámetros como objetivo del proceso de reanimación hemodinámica8. Así, aunque resulten altamente prometedoras, no podemos recomendar, en el momento actual, la incorporación de estas tecnologías a la práctica clínica como objetivo en la guía de la reversión del shock.

Detección de shock
1. Definiremos shock como aquella situación de riesgo vital en la que existe una alteración en el DO2y/o la capacidad para utilizar el oxígeno, dando lugar a disoxia tisular.
2. La presencia de hipotensión arterial (PAM<65mmHg) no es necesaria para definir el estado de shock.
3. Ante una situación clínica sugestiva, la alteración de un marcador de perfusión tisular (lactato y/o saturaciones venosas de oxígeno) será definitoria de shock, esté acompañada o no de hipotensión arterial.

Recomendaciones: Objetivos de la reanimación hemodinámica
1. Las medidas de reanimación hemodinámica deben instaurarse de inmediato, y la consecución de los objetivos marcados debe darse de la forma más precoz posible (idealmente en las primeras 6h)
2. El primer paso en la reanimación hemodinámica será la rápida consecución y el mantenimiento de unos valores mínimos de presión de perfusión de los tejidos, definida como PAM≥65mmHg.  
3. Una vez asegurada la presión de perfusión, buscaremos corregir la disoxia tisular, definido como restauración de valores normales de marcadores globales de hipoxia tisular: SvcO2≥70% (o SvO2≥65%) y/o la normalización de los niveles de lactato.  
4, La guía de la reanimación hemodinámica mediante la monitorización del aclaramiento de lactato no ha mostrado inferioridad frente a la monitorización de la SvcO2.
5. En pacientes quirúrgicos de alto riesgo podríamos perseguir la optimización del DO2a valores≥600ml O2/min/m2para evitar la hipoperfusión tisular.  
6. En situaciones de SvcO2≥70%, un gradiente arteriovenoso de CO2elevado puede indicar persistencia de hipoperfusión de algunos territorios, por lo que se podría sugerir la optimización del DO2hasta valores de P(v-a)CO2<6mmHg.  
 7. En el momento actual, el uso de tecnologías para la evaluación de la microcirculación o la circulación regional no se ha explorado en el proceso de resucitación, por lo que no se recomienda su incorporación rutinaria a la práctica clínica.  
8. La integración de los diferentes objetivos en algoritmos o bundles de reanimación precoz van a resultar en un mejor pronóstico de los pacientes tratados.

En los pacientes que presenten hipoxemia grave inicial y exista sospecha de fallo cardíaco o en pacientes con problemas cardiopulmonares complejos parece razonable monitorizar el GC en fases más precoces, ya que las medidas de resucitación inicial (expansión de volumen, aplicación de ventilación mecánica, etc.) pueden empeorar la función cardíaca y respiratoria. Por otro lado, en el shock cardiogénico, una correcta y precoz monitorización del GC tiene especial importancia no solo para el diagnóstico, sino para dirigir el posterior tratamiento

Por último, como ha sido comentado en el apartado previo, se ha demostrado que en pacientes con alto riesgo quirúrgico, una adecuada optimización del GC durante la intervención y en las horas inmediatamente posteriores incide de manera directa en su pronóstico

En la actualidad, disponemos de una gran variedad de métodos para monitorizar el GC con importantes diferencias entre ellos. En el capítulo dedicado a la estimación del GC de la serie de «Puesta al día en monitorización hemodinámica» se puede encontrar la información referente a los dispositivos disponibles23. Estos dispositivos pueden ser clasificados en función del grado de invasividad. Según esta clasificación, disponemos de sistemas invasivos (CAP), semiinvasivos (termodilución transpulmonar, litiodilución, análisis del contorno de la onda de pulso, Doppler esofágico, etc.) y no invasivos (ecografía, biorreactancia, tecnología Doppler, etc.).

El GC obtenido por termodilución con el CAP es considerado el método «gold standard» para la medición del GC desde su introducción en 197024,25. La mayoría de los métodos de estimación del GC han sido evaluados mediante la comparación con los datos obtenidos por termodilución con el CAP a pesar de que esta técnica tiene sus limitaciones y podría no ser el comparador de elección. El CAP permite además obtener parámetros hemodinámicos relevantes como la presión de arteria pulmonar (PAP), la presión de oclusión de arteria pulmonar (POAP) y parámetros de DO2 y VO2. Sin embargo, la utilización del CAP ha descendido debido su invasividad y al debate sobre sus posibles complicaciones y sus indicaciones

Entre los métodos semiinvasivos de estimación del GC se encuentran la termodilución transpulmonar, la litiodilución y el análisis de la onda de pulso.

La termodilución transpulmonar es una variante del método de termodilución en la cual la inyección del bolus de suero se realiza a través de un catéter venoso central y el cambio de temperatura es detectado por un sensor situado en una vía arterial (femoral o axilar), obteniéndose el GC mediante una ecuación modificada de la de Stewart-Hamilton. Su uso es discutido en casos de importantes variaciones térmicas a nivel corporal, uso de sistemas de depuración extracorpórea y shunts intracardíacos. Una variedad de estudios han validado este método en diferentes poblaciones de pacientes críticos

La litiodilución es una técnica basada en la utilización del cloruro de litio como trazador para el cálculo del GC. Para su calibración se inyecta un bolus de cloruro de litio en una vía venosa central o periférica y un electrodo situado en una vía arterial detecta la concentración de litio en sangre arterial, calculando el GC usando el área bajo la curva de concentración-tiempo. Su uso está contraindicado en pacientes en tratamiento con litio, con el uso de relajantes musculares no despolarizantes y en casos de shunts intracardíacos. Se ha demostrado también su utilidad en diferentes estudios realizados en unidades de cuidados intensivos (UCI) y en el ámbito quirúrgico

Entre los métodos no invasivos destacan la biorreactancia, el Doppler transtorácico y la ecocardiografía.

La biorreactancia, utilizada por el sistema NICOM® (Cheetah Medical) está basada en el análisis del cambio de fase que se produce en la onda eléctrica de alta frecuencia que es emitida al tórax por los cambios en el volumen sanguíneo. Existen resultados prometedores en pacientes de cirugía cardíaca, pero no disponemos todavía de suficientes estudios acerca de su utilidad y fiabilidad en poblaciones más amplias de pacientes críticos

El Doppler transtorácico consiste en la aplicación de una sonda Doppler ciega sobre diferentes áreas torácicas que nos permitan medir el flujo a diferentes niveles del sistema cardiovascular. Esta técnica posee una rápida curva de aprendizaje, sin necesidad de calibración, pero presenta la limitación de depender del operador. El sistema más utilizado y con mayor número de publicaciones que lo respalden es el monitor USCOM® (Pty Ltd). A pesar de sus supuestas ventajas, la literatura respecto a su uso comparativo con el CAP en cuidados intensivos es escasa

La ecocardiografía permite obtener el GC de forma no invasiva (ecocardiografía transtorácica, ETT) o mínimamente invasiva (ecocardiografía transesofágica, ETE) y ofrece además una amplia información hemodinámica. A pesar de sus múltiples aplicaciones y la rápida extensión de su utilización en la UCI, es preciso adquirir un entrenamiento adecuado para poder garantizar la calidad y fiabilidad de las medidas

La selección de un dispositivo u otro de estimación del GC está influida por diversos factores. Algunos de ellos están relacionados con el propio dispositivo como son sus ventajas y sus limitaciones. Otros factores pueden ser institucionales o estar relacionados con el paciente. Además, debería considerarse que una estimación por una técnica menos invasiva puede ser preferible si puede obtenerse más rápida y fácilmente, incluso si es ligeramente menos exacta, sobre todo en situaciones en las que se requiere una valoración rápida de la situación del paciente. Por otro lado, la comparabilidad de las técnicas para el seguimiento de los cambios y las tendencias del GC puede ser más relevante en la práctica clínica que el grado de concordancia de los valores absolutos. En muchos casos, la elección del dispositivo de monitorización hemodinámica depende no solo de la técnica de estimación del GC, sino que está relacionada con los parámetros adicionales que proporciona, la gravedad del paciente y la etiología del shock

. Recomendaciones: Monitorización del gasto cardíaco
1. No se recomienda la monitorización rutinaria y sistemática del GC en los pacientes con inestabilidad hemodinámica.
Recomendaciones: Precarga y estimación de la respuesta al volumen

1. Las medidas de precarga, como las presiones intravasculares (PVC o POAP), los volúmenes o las áreas, no permiten predecir con fiabilidad la respuesta al aporte de volumen (L1; B) aunque valores bajos de precarga (PVC, POAP<5mmHg) pueden asociarse a una respuesta positiva a la administración de volumen.

2. La VVS o sus parámetros derivados (variación de presión de pulso, variación del flujo aórtico, variación del pico de velocidad del flujo aórtico, etc.) han demostrado ser buenos predictores de la respuesta a volumen en pacientes críticos en ventilación mecánica controlada, sin esfuerzos respiratorios espontáneos, con ritmo sinusal, La variación respiratoria del diámetro de la vena cava inferior y el índice de colapsabilidad de la vena cava superior permiten predecir la respuesta al volumen en la misma población de pacientes.

3. La maniobra de elevación pasiva de las piernas (medida mediante contorno de pulso, ecocardiografía o Doppler esofágico) identifica con gran fiabilidad a los pacientes que responden a la administración de fluidos. La capacidad predictiva de esta maniobra no se afecta en casos de fibrilación auricular, volúmenes corrientes bajos o respiración espontánea.  

4. En las situaciones clínicas en las que los parámetros predictores estáticos y dinámicos no puedan ser utilizados, se recomienda la realización de una prueba de administración de volumen (fluid challenge).

Recomendaciones: Evaluación de la contractilidad y la poscarga
1.  La FEVI estimada por ecocardiografía, a pesar de su relativa dependencia de las condiciones de carga, es el parámetro fundamental de estimación de la contractilidad en la práctica clínica.

2. Los parámetros obtenidos mediante el CAP (SW, resistencia vascular, GC y presiones de llenado, entre otros) y otros parámetros ecocardiográficos son útiles en la estimación de la contractilidad/poscarga a pie de cama. (L2; B)

3. La información obtenida con los nuevos sistemas de monitorización y con la medición de los péptidos natriuréticos podría proporcionarnos una valoración de la contractilidad pero faltan estudios confirmatorios.

La monitorización hemodinámica pretende ser el soporte y la guía de todo el proceso de optimización del aporte de O2 a los tejidos, basándose en la premisa de que la detección, el conocimiento y la comprensión de las alteraciones fisiopatológicas de los procesos de la enfermedad crítica deberían traducirse en un mejor tratamiento y una mayor recuperación del paciente. Es importante incidir en que ningún sistema de monitorización hemodinámica puede mejorar el pronóstico por sí mismo. Las condiciones que deben cumplirse para que se obtenga un beneficio clínico son: 1) los datos obtenidos del sistema de monitorización deben ser lo suficientemente exactos para ser capaces de influir en la toma de decisiones terapéuticas, 2) los datos deben ser clínicamente relevantes para el paciente, y 3) el tratamiento instaurado, guiado por la interpretación de los datos obtenidos, debe repercutir favorablemente en el pronóstico del paciente.

Monitorización básica inicial
La atención inicial al paciente en situación de shock comprende una anamnesis y una exploración física adecuadas, junto con la monitorización electrocardiográfica (frecuencia cardíaca y ECG) y pulsioximétrica (SpO2), no solo para orientar la posibilidad de existencia de la situación de insuficiencia cardiovascular, sino como complementos necesarios en el diagnóstico del cuadro clínico.

En cuanto a la monitorización hemodinámica básica inicial de un paciente con patología aguda potencialmente crítica, esta vendrá determinada por la propia definición de shock8. Así pues, será fundamental la medición de la PA y de, al menos, una variable que nos informe del estado de oxigenación global de los tejidos, como el láctico sérico o la SvcO2. La importancia de la monitorización de la PAM como indicador de la presión de perfusión de los tejidos ya se ha debatido ampliamente con anterioridad en otro apartado. Diversos trabajos han demostrado que el tiempo de hipotensión en las primeras horas de shock tiene un efecto acumulativo en el desarrollo de fracasos orgánicos9, lo que argumentaría la necesidad de una medición frecuente y precisa de la PA. Paralelamente, la medición de la PA mediante sistemas no invasivos pierde precisión en las situaciones de shock. Así pues, parecería razonable abogar por la medición invasiva y continua de la PA en el paciente crítico. De todas formas, la monitorización de la PA podría ser no invasiva en fases iniciales durante su estancia en planta de hospitalización o en urgencias.

La ecocardiografía tiene actualmente un papel relevante en el diagnóstico precoz y en el manejo terapéutico de los pacientes con inestabilidad hemodinámica como se comentará en el siguiente apartado de estas recomendaciones

Monitorización hemodinámica continua.
Generalmente, un manejo inicial adecuado basado en los datos obtenidos de la historia clínica, la exploración física y de una monitorización básica podría ser suficiente para la obtención de un desenlace favorable. Sin embargo, en algunos pacientes, a pesar de una resucitación inicial adecuada, podría producirse una situación de shock persistente o aparecer nuevas complicaciones relacionadas con el proceso inicial o con las intervenciones terapéuticas adoptadas. Como ya se había mencionado previamente en el apartado de estimación del GC, en aquellos pacientes con insuficiente respuesta a las medidas aplicadas durante las primeras 3-6h o en pacientes con fracasos orgánicos y/o comorbilidades susceptibles de interferir o empeorar durante la reanimación en los cuales podríamos precisar un mayor conocimiento de la fisiopatología del proceso, nos plantearemos un mayor grado de monitorización hemodinámica continua que nos permita optimizar nuestras intervenciones, cuantificar sus efectos y evitar complicaciones derivadas de los tratamientos aplicados

La monitorización hemodinámica continua debería proporcionarnos información acerca del GC y sus determinantes: precarga/dependencia de precarga, contractilidad y poscarga. Así pues, junto a la monitorización de las variables objetivo, ya sean la PAM y saturaciones venosas de O2 y/o el aclaramiento de lactato, un proceso de reanimación intensivo requerirá de las tecnologías que permitan evaluar de forma continua estos parámetros para conseguir su correcta adecuación. La monitorización de las variables objetivo seguirá siendo fundamental, puesto que son las que marcarán el final del proceso de reanimación. Será necesaria la medición de estas variables de forma repetida, después de las intervenciones terapéuticas, hasta su normalización mantenida en el tiempo.

Además de factores propios del paciente, en el momento de escoger qué sistema de monitorización vamos a utilizar, deberemos tener en cuenta otros factores, como son las tecnologías disponibles en nuestro centro, la experiencia del equipo con cada sistema, el lugar donde se va a llevar a cabo la monitorización y el proceso de reanimación (urgencias, UCI, quirófano, etc.) así como el coste-efectividad. El sistema de monitorización hemodinámica ideal debería ser simple, seguro, relativamente versátil, fácil de usar, operador-independiente, coste-efectivo, fiable, preciso y debería proporcionar variables relevantes que nos aporten información capaz de dirigir la terapia, En la actualidad, ningún sistema disponible cumple todas estas condiciones. Unos principios que pueden ayudarnos a elegir el sistema de monitorización hemodinámica continua son los siguientes:

- La monitorización ha demostrado ser particularmente útil en las fases precoces de la reanimación hemodinámica y es menos útil cuando el fallo orgánico está establecido.
- Aunque es preferible un sistema menos invasivo, no siempre es posible debido a que en situaciones complejas necesitamos una información completa, precisa y fiable que no siempre proporcionan los sistemas menos invasivos.
- Los sistemas no invasivos podrían usarse en planta de hospitalización o servicios de urgencias para confirmar un diagnóstico preliminar, ver la evolución en pacientes de menos riesgo o para monitorización previa al ingreso en la UCI. Su uso no está recomendado, por el momento, para el paciente más crítico. En general, a mayor gravedad y complejidad del paciente, mayor necesidad de tratamiento intensivo y precisión en las medidas realizadas, premisas que van ligadas, en la actualidad, a mayor invasividad en los sistemas utilizados
- Es importante la monitorización de los cambios hemodinámicos en períodos cortos de tiempo (p. ej., administración de volumen o fármacos inotrópicos). Además, la monitorización continua de las variables hemodinámicas y la estimación del GC latido a latido puede ser de mayor utilidad.
- El CAP puede ser útil para el manejo de condiciones circulatorias complejas en las que se considera de especial importancia el conocimiento de la PAP, POAP y parámetros de oxigenación tisular (p. ej., fallo derecho e izquierdo agudo, hipertensión pulmonar, weaning difícil, pacientes sometidos a cirugía cardíaca o pendientes de trasplante cardíaco)
- Las técnicas de dilución transpulmonar que determinan los volúmenes intratorácicos y el agua extravascular pulmonar se pueden considerar de elección para guiar el manejo hemodinámico y la aplicación de ventilación mecánica en pacientes con lesión pulmonar aguda o síndrome de distrés respiratorio agudo. En estos casos, el CAP podría también ser utilizado
- Los sistemas que obtienen el GC mediante el análisis de la onda de pulso estarían indicados en el área quirúrgica, en situaciones de shock séptico o en otros escenarios clínicos sin complicaciones graves respiratorias. Los dispositivos sin calibración externa pierden fiabilidad si se producen alteraciones importantes del tono vascular

Recomendaciones: Monitorización básica inicial
1. Exploración física completa, incluyendo ECG y SpO2.
2. Medición inicial y frecuente de la PA (preferiblemente de manera invasiva) en pacientes con un cuadro clínico sugestivo de insuficiencia cardiovascular.
3. Medición inicial de un marcador metabólico de equilibrio DO2/VO2, fundamentalmente el lactato sérico.
4. Medición repetida de un marcador metabólico de equilibrio DO2/VO2, lactato sérico o saturaciones venosas de O2, durante el proceso de resucitación. (L1; A)
5. En el manejo inicial del shock, y en ausencia de otras variables de valoración de dependencia de precarga y/o GC, la monitorización de la PVC puede ser de utilidad en la toma de decisiones.

Recomendaciones: Monitorización hemodinámica continua
1. Se recomienda la medición repetida de un marcador metabólico de equilibrio DO2/VO2, lactato sérico o saturaciones venosas de O2, durante el proceso de resucitación.  
2. Se recomienda la monitorización hemodinámica continua en los pacientes que persistan con signos de hipoperfusión tisular transcurridas las 3-6 primeras horas del inicio del tratamiento y/o en aquellos pacientes en los que se quiera profundizar en la fisiopatología del proceso.  
3. El CAP estaría indicado en situaciones complejas circulatorias en las que se considera de especial importancia el conocimiento de la PAP, POAP y parámetros de oxigenación tisular.
4. Los sistemas no invasivos no están recomendados actualmente para monitorización hemodinámica de pacientes críticamente enfermos en la UCI. Estos dispositivos quedarían reservados para pacientes con menor gravedad y/o para aquellos pacientes ingresados en áreas de hospitalización o urgencias.

Recomendaciones: Ecocardiografía
1.  En la fase inicial de evaluación del shock, la ecocardiografía básica es una herramienta extremadamente útil para obtener información sobre su etiología y puede ser de gran ayuda como guía y monitorización del tratamiento instaurado.
2. En las situaciones de shock en las que haya una insuficiente respuesta terapéutica o se necesite profundizar en la fisiopatología del proceso, debería realizarse una ecocardiografía de nivel avanzado.” “Monitorización hemodinámica en el paciente crítico. Recomendaciones Sociedad Espanola de Medicina Intensiva, Crítica y Unidades Coronarias, 8 de octubre de 2013”

SOPORTE CIRCULATORIO.

Elementos que necesitan soporte hemodinámico son:
·         Falla cardiaca(Gasto cardiaco bajo por alteraciones de la contractibilidad miocardita) edema agudo pulmonar
·         Choque cardiogènico, gasto cardiaco bajo, hipoperfusión tisular sistémica, evidencia de otros órganos o sitemas y lactato elevado.
·         Soporte circulatorio.
·         IAM.
·         Miocardiopatia por sepsis
·         Miocardia por stres de Takotsubo
·         Miocarditis
·         Estatus posparo
·         Posoperados de cirugía cardiaca
·         Otros.

Ø  Precarga elevada
Ø  Inotrpismo bajo
Ø  Cronotropismo elevado o baja
Ø  Poscarga baja

Los dispositivos de monitorización hemodinámica se clasifican en:

NO INVASIVOS:
-ECG
-Pulsioximetría
-Esfingomanómetro.
INVASIVOS:
-Catéter arterial
-Análisis del contorno del pulso arterial
-Catéter venoso central.
-Catéter en arteria pulmonar

TRATAMIENTO.
Soporte vital
Vìa aérea avanzada
Ventilación mecánica invasiva
Vasoactivos
Inotrópicos levosimendel sensibilizador de los canales de calcio, aumenta la contractibilidad miocárdica sin consumo de oxigeno adicional, permanece el efecto hasta 3 meses, la dobutamina produce taquicardia, incrementa el consumo de oxigeno miocardio

CHOQUE REFRACTARIO.
Medidas de soporte circulatorio.
Balón de contrapulsaciòn aórtico. El balón intraaórtico de contrapulsación (BIACP) es el dispositivo de asistencia de corta duración más utilizado en la actualidad debido a su fácil manejo y funcionamiento, así como a sus excelentes resultados. La asistencia mecánica circulatoria debe comenzar por los dispositivos más simples, progresando hacia los más complejos según la respuesta del paciente. El mecanismo básico por el cual ejerce su efecto consiste en un desplazamiento de volúmenes mediante el cual se ejerce un descenso de la poscarga del ventrículo izquierdo (VI), con la resultante disminución del trabajo cardíaco, del consumo de oxígeno del miocardio y, por lo tanto, en un aumento de la presión diastólica que va a mejorar la perfusión coronaria a nivel proximal y la perfusión periférica a nivel distal. Desde el punto de vista del tipo de asistencia, se debe considerar como una asistencia en serie que requiere obligatoriamente la actividad del ventrículo y que provoca un aumento limitado del volumen de eyección.
 Cateter por vìa femoral instalado en la aorta en la zona de seguridad antes de la  arteria subclavia y por arriba de las aterias renales.

Efectos hemodinámicos que se busca:

Ø  Cambios de la forma de onda y disparadores
Ø  Evaluación de ka forma de onda de BCPIA
Ø  Evaluación del BCPIA por tenporizaciòn
Ø  Inflado optimo
Ø  Tiempo de inflado optimo
Ø  Activación y sincronía con trazos de ecg

ETAPAS DE LA ATENCIÒN DEL ESTADO DE CHOQUE
1.       Salvamento: Obtener una tensipon arterial minima aceptables (realizar intervenciones crìticas invasivas) ocurre en las primeras 2 horas de la atención de un àciente grave donde no se debe administrar mas de 2 litros de solución,
2.       Optimización: Proveer adecuado disponibilidad de oxìgeno, optimizar gasto cardiaco SvcO2, lactato.
3.       Estabilización: Medidas de soporte a órganos, minimizar complicaciones.
4.       Desescalaciòn: Destetar de aminas vasoactivas, alcanzar balance negativo de líquidos.
Evitar.
Ø  Inflado temprano
Ø  Inflado inflado tardìo
Ø  Desinflado temprano
Ø  Desinflado terdio

INDICACIONES
Ø  Angioplastia coronaria de alto riesgo
Ø  Choque cardiogenico
Ø  Peri y pos operatorio quirúrgico cardiaco
Ø  Preoperatorio de cirugía cardiaca
Ø  Angina inestables
Ø  IAM
Ø  Falla cardiaca congestiva refractaria.
Ø  Otros

CONTRAINDICACIONES
Ø  Insuficiencia valvular aortica severa
Ø  Aneurisma abdominal o aórtico
Ø  Enfermedad arterial aortica o iliaca calcificada grave o enfermedad vascular periférica grave

EFECOS SECUNDARIOS
Isquemia de extremidades
Sangrado excesivo de sitio de inserción
Trombocitopenia
Inmovilidad del catéter con balón
Fuga de globo
Infección
Trombosis

AVALUACIÒN DEL PACIENTE
Signos vitales
Oxigenación
Producción de orina
Perfusiòn periférica
El sistema nervisos central
Condición general

CONSIDERACIONES DE TRANSPORTE
Ø  Tener en cuenta la fuente de energía
Ø  Duración de las baterias
Ø  Es espacio físico

VARIABLES HEMOFINÀMICAS
Variaciòn de la presión del pulso
Normal de 5 - - 10 mmhg


BIBLIOGRAFÌA
·         Vincent JL, Rhodes A, Perel A, Martin GS, Della Roca G, Vallet B, et al. Revisión clínica: actualización sobre la monitorización hemodinámica Consenso de 16. Crit Care. 2011
·         García X, Mateu L, Maynar J, Mercadal J, Ochagavía A, Ferrandiz A, et al. Estimación del gasto cardíaco. Utilidad en la práctica clínica. Monitorización disponible invasiva y no invasiva.
·         Monitorización hemodinámica en el paciente crítico. Recomendaciones Sociedad Espanola de Medicina Intensiva, Crítica y Unidades Coronarias, 8 de octubre de 2013;

Comentarios

Entradas populares de este blog

EMERGENCIAS POR QUEMADURAS

TRAUMA

REANIMACIÓN, SHOCK Y PRODUCTOS SANGUÍNEOS